Evaluasi Mutu Fisikokimia Beras Hasil Persilangan antara Empat Padi Varietas Unggul dan Padi Liar (Oryza glaberrima dan O. rufipogon)

  • Siti Yuriyah Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911
  • Oky Dwi Purwanto Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911
  • Higa Afza Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911
  • Ahmad Dadang Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911
  • Agus Masyuri Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911
  • Rina Siti Galurina Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911
  • Dwinita Wikan Utami Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911

Abstract

The physicochemical quality of rice is evaluated to ensure that it is fit for consumption and meets established quality standards. This study aims to analyze the physicochemical properties of rice strains resulting from crosses between four high-yielding varieties of rice and two wild rices so that the appropriate genotype is obtained for the development of quality rice. The research was conducted from November 2019 to March 2020 at the Quality Laboratory, Muara Experimental Garden, Rice Research Center, Bogor. The rice genotypes used were 22 strains resulting from crosses between high-yielding varieties of rice (Ciherang, Inpari 13, Inpari 10, and Situ Bagendit), and wild rice (Oryza glaberrima and O. rufipogon), 4 comparison varieties of crossbred elders, and two comparison varieties of organoleptic tests (Memberamo and IR42). Physical and chemical qualities were observed in terms of grain moisture content, grain density, broken skin rice yield, milled rice yield, head rice yield, rice length, rice shape, and rice liming, amylose content, gelatinization temperature, and organoleptic. The results showed that the strains 44-F-C21, 58-F-C21, and 59-F-C21 provided fairly good rice quality with head rice yields above 80% and higher than their respective elders (Situ Bagendit and Ciherang), and water content below 14%. These strains had characteristic characteristics, namely medium rice form, amylose content of 26.38%, and alkali score of 2-3. Most of these genotypes also exhibited high gelatinization temperatures, medium rice texture, and savory rice flavors. The genotype selected from the results of crosses between high-yielding varieties of rice and wild rice has the potential to be developed because there are genetic improvements from its elders on several physicochemical characteristics of rice.

 

Keywords: amylose content; gelatinization temperature; physicochemical properties; rice lines; wild rice

Downloads

Download data is not yet available.

References

Abdullah B. 2006. Potensi padi liar sebagai sumber genetik dalam pemuliaan padi. Buletin Iptek Tanaman Pangan. 1(2): 143–152.

Afifah N, Zakiyh N. 2020. Review artikel: Indeks glikemik pada berbagai varietas beras. Farmaka. 18(2): 42–49.

Ahmed I, Qazi IM, Li Z, Ullah J. 2016. Rice noodles: materials, processing and quality evaluation. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences. 53(3): 215–238.

Akhmadi G, Purwoko BS, Dewi IS, Wirnas DD. 2017. Pemilihan karakter agronomi untuk seleksi pada galur-galur padi dihaploid hasil kultur antera. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). 45(1): 1–8. https://doi.org/10.24831/jai.v45i1.13681.

Allidawati, Kustianto B. 1989. Metode uji mutu beras dalam program pemuliaan padi. Di dalam: Ismunadji M, Syam M, Yuswadi, editor. Padi Buku 2. Bogor: Pusat Penelitian dan Pengembangan Tanaman Pangan. hlm. 363–375.

Arifa AH, Syamsir E, Budijanto S. 2021. Karakterisasi fisikokimia beras hitam (Oryza sativa L.) dari Jawa Barat, Indonesia. AgriTECH. 41(1): 15–24. https://doi.org/10.22146/agritech.53307.

Bao J. 2014. Genes and QTLs for rice grain quality improvement. Di dalam: Yan W, Bao J, editor. Rice: Germplasm, Genetics and Improvement. InTech. hlm. 239–278. https://doi.org/10.5772/56621

[BSN] Badan Standardisasi Nasional. 2020. Standar Nasional Indonesia SNI 6128:2020 Beras. Jakarta: Badan Standardisasi Nasional.

Budijanto S, Sitanggang AB. 2011. Produktivitas dan proses penggilingan padi terkait dengan pengendalian faktor mutu berasnya. Pangan. 20(2): 141–152.

Chairunnisak, Sugiyanta, Santosa E. 2021. Pengaruh nitrogen terhadap kualitas beras aromatik. Jurnal Agronida. 7(1): 1–8. https://doi.org/10.30997/jag.v7i1.4064.

Cruz ND, Khush GS. 2000. Rice grain quality evaluation procedures. Di dalam: Singh RK, Singh US, Khush GS, editor. Aromatic Rices. New Delhi: Oxford & IBH Publ. hlm. 15–28.

Firdaus MJ, Purwoko BS, Dewi IS, Suwarno WB. 2022. Karakterisasi fisikokimia beras galur-galur padi hitam dihaploid. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). 50(1): 1–9. https://doi.org/10.24831/jai.v50i1.39850.

Fitriyah D, Ubaidillah M, Oktaviani F. 2020. Analisis kandungan gizi beras dari beberapa galur padi transgenik Pac Nagdong/Ir36. ARTERI: Jurnal Ilmu Kesehatan, 1(2): 154–160. https://doi.org/10.37148/arteri.v1i2.51.

Gann PJ, Esguerra M, Counce PA, Srivastava V. 2021. Genotype‐dependent and heat‐induced grain chalkiness in rice correlates with the expression patterns of starch biosynthesis genes. Plant-Environment Interactions. 2(4): 165–176. https://doi.org/10.1002/pei3.10054.

Han C-M, Shin J-H, Kwon J-B, Kim Jong-Soo, Won J-G, Kim Jong-Sang. 2021. Comparison of morphological and physicochemical properties of a floury rice variety upon pre-harvest sprouting. Foods. 10(4): 746 https://doi.org/10.3390/foods10040746.

IRRI. 2013. Standard Evaluation System (SES) for Rice. Ed ke-5. Los Baños: International Rice Research Institute.

Irwansyah D, Amani Y. 2017. Penerapan k-nearest neighbors dalam penilaian kelayakan mesin produksi padi. Industrial Engineering Journal. 6(2): 61–66.

Iswari K. 2012. Kesiapan teknologi panen dan pascapanen padi dalam menekan kehilangan hasil dan meningkatkan mutu beras. Jurnal Litbang Pertanian. 31(2): 58–67.

Jumali, Widyantoro. 2017. Karakteristik budidaya padi gogo dan mutu gabah/beras yang dihasilkan di Jawa Barat dan Banten. Dalam: Prosiding Temu Teknologi Padi 2015. Balai Besar Penelitian Tanaman Padi, Sukamandi, Subang, 6 Agustus 2015.

Kalsum U, Sabat E, Imadudin P. 2020. Analisa hasil rendemen giling dan kualitas beras pada penggilingan padi kecil keliling. Agrosaintifika. 2(2): 125–130.

Kobarsih M, Siswanto N. 2015. Penanganan susut panen dan pasca panen padi kaitannya dengan anomali iklim di wilayah Daerah Istimewa Yogyakarta. Planta Tropika Journal of Agro Science. 3(2): 100–106. https://doi.org/10.18196/pt.2015.046.100-106.

Kumar A, Priyadarshinee R, Roy A, Dasgupta D, Mandal T. 2016. Current techniques in rice mill effluent treatment: Emerging opportunities for waste reuse and waste-to-energy conversion. Chemosphere. 164: 404–412. https://doi.org/10.1016/j.chemosphere.2016.08.118.

Kumar I, Khush GS. 1986. Gene dosage effects of amylose content in rice endosperm. The Japanese Journal of Genetics. 61(6): 559–568. https://doi.org/10.1266/jjg.61.559.

Lestari AP, Aswidinnoor H, Suwarno. 2007. Uji daya hasil pendahuluan dan mutu beras 21 padi hibrida harapan. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). 35(1): 1–7.

Lestari P, Ham T-H, Lee H-H, Woo M-O, Jiang W, Chu S-H, Kwon S-W, Ma K, Lee J-H, Cho Y-C, et al. 2009. PCR marker-based evaluation of the eating quality of Japonica rice (Oryza sativa L.). J Agric Food Chem. 57(7): 2754–2762. https://doi.org/10.1021/jf803804k.

Masniawati A, Marwah Asrul N Al, Johannes E, Asnady M. 2018. Characterization of rice physicochemical properties local rice germplasm from Tana Toraja Regency of South Sulawesi. J Phys Conf Ser. 979(1): 012005. https://doi.org/10.1088/1742-6596/979/1/012005.

Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MdA, Muharam FM, Aslani F, Rafii MY, Ismail MR. 2018. Relationship between high temperature and formation of chalkiness and their effects on quality of rice. Biomed Res Int. 2018: 1–18. https://doi.org/10.1155/2018/1653721.

Nugraha S. 2012. Inovasi teknologi pascapanen untuk mengurangi susut hasil dan mempertahankan mutu gabah/beras di tingkat petani. Buletin Teknologi Pascananen Pertanian. 8(1): 48–61.

Rachmat R, Thahir R, Gummert M. 2016. The empirical relationship between price and quality of rice at market level in West Java. Indonesian Journal of Agricultural Science. 7(1): 27–33. https://doi.org/10.21082/ijas.v7n1.2006.27-33.

Riyanto A, Susanti D, Haryanto TAD. 2023. Parameter genetik dan analisis hubungan antar sifat pada populasi F2 padi keturunan persilangan Inpari 31 x Basmati Delta 9. Jurnal Penelitian Pertanian Terapan. 23 (1): 94–109. http://dx.doi.org/10.25181/jppt.v23i1.2433.

Septianingrum E, Kusbiantoro B. 2017. Upaya memperpanjang umur simpan (shelf life) gabah atau beras melalui pengendalian terhadap faktor-faktor penyimpanan dan metode penyimpanannya. Dalam: Prosiding Temu Teknologi Padi 2015., Sukamandi: Balai Besar Penelitian Tanaman Padi. 6 Agustus 2015.

Shijagurumayum S, Devi GAS, Singh ChB. 2018. Grain quality evaluation of some aromatic rice varieties of Manipur, India. Research on Crops. 19(2): 169–181. https://doi.org/10.5958/2348-7542.2018.00026.8.

Soerjandoko RNE. 2010. Teknik pengujian mutu beras skala laboratorium. Buletin Teknik Pertanian. 15(2): 44–47.

Suismono, Setyono A, Indrasari SD, Wibowo P, Las I. 2003. Evaluasi Mutu Beras Berbagai Varietas Padi di Indonesia. Sukamandi: Balai Penelitian Tanaman Padi.

Sun M-M, Abdula SE, Lee H-J, Cho Y-C, Han L-Z, Koh H-J, Cho Y-G. 2011. Molecular aspect of good eating quality formation in japonica rice. PLoS One. 6(4): e18385. https://doi.org/10.1371/journal.pone.0018385.

Susiyanti, Rusmana, Maryani Y, Sjaifuddin, Krisdianto N, Syabana MA. 2020. The physicochemical properties of several Indonesian rice varieties. Biotropia. 27(1): 41–50. https://doi.org/10.11598/btb.2020.27.1.1030.

Syafutri MI, Pratama F, Syaiful F, Faizal A. 2016. Effects of varieties and cooking methods on physical and chemical characteristics of cooked rice. Rice Sci. 23(5): 282–286. https://doi.org/10.1016/j.rsci.2016.08.006.

Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, et al. 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences. 106(51): 21760–21765. https://doi.org/10.1073/pnas.0912396106.

Wang H, Zhu S, Dang X, Liu E, Hu X, Eltahawy MS, Zaid IU, Hong D. 2019. Favorable alleles mining for gelatinization temperature, gel consistency and amylose content in Oryza sativa by association mapping. BMC Genet. 20(1): 34. https://doi.org/10.1186/s12863-019-0735-y.

Yang L, Wang Y. 2019. Impact of climate change on rice grain quality. Rice. 427–441. https://doi.org/10.1016/B978-0-12-811508-4.00013-7

Zuhrotul HA, Bintoro N, Susanti DY. 2008. Unjuk kerja mesin penggiling padi tipe single pass. Di dalam: Prosiding Seminar Nasional Teknik Pertanian 2008. Yogyakarta: Fakultas Teknologi Pertanian UGM. hlm. 1–8.

Published
2024-03-15
How to Cite
YuriyahS., PurwantoO. D., AfzaH., DadangA., MasyuriA., GalurinaR. S., & UtamiD. W. (2024). Evaluasi Mutu Fisikokimia Beras Hasil Persilangan antara Empat Padi Varietas Unggul dan Padi Liar (Oryza glaberrima dan O. rufipogon). Jurnal Ilmu Pertanian Indonesia, 29(3), 397-407. https://doi.org/10.18343/jipi.29.3.397