Mikrostruktur dan Karakteristik Permukaan Kayu Pinus Scots (Pinus sylvestris L.) Termodifikasi Gliserol dan Asam Sitrat

  • Wayan Darmawan Bogor Agricultural University
  • Gabriel Tobing IPB University
  • Efrida Basri Pusat Penelitian Biomassa dan Bioproduk, Badan Riset dan Inovasi Nasional
  • Resa Martha IPB University
  • Istie Rahayu IPB University
  • Philippe Gérardin Laboratoire d’Etudes et de Recherche sur le Materiau Bois (LERMAB), Université de Lorraine, Nancy, Perancis

Abstract

Kayu pinus scots (Pinus sylvestris L.) adalah salah satu produk ekspor kayu yang paling populer. Akan tetapi, keawetannya yang rendah dapat mengurangi potensi dan pemanfaatan kayu tersebut. Modifikasi kimia merupakan salah satu solusi untuk mengatasi kelemahan ini. Modifikasi kimia menggunakan bahan non-biosida gliserol dan asam sitrat dilakukan untuk memperbaiki sifat-sifat kayu yang inferior. Tujuan penelitian ini adalah untuk mengamati mikrostruktur dan mengevaluasi karakteristik permukaan kayu pinus scotsyang dimodifikasi dengan gliserol dan asam sitrat. Kayu pinus scots dimodifikasi menggunakan gliserol dan asam sitrat dengan nilai penambahan berat atau weight percent gain (WPG) sebesar 20% dan 46%. Karakteristik permukaan yang diukur meliputi kekasaran permukaan, energi bebas permukaan (Surface Free Energy atau SFE), keterbasahan, dan daya lekat. Hasil penelitian menunjukkan bahwa modifikasi kimia menggunakan gliserol dan asam sitrat menghasilkan struktur kayu pinus yang lebih terisi dan lebih padat. Modifikasi ini juga dapat mengurangi kekasaran permukaan kayu yang juga berakibat pada penurunan nilai SFE, peningkatan sudut kontak, dan penurunan keterbasahan pada permukaan kayu. Hal ini dapat menyebabkan penurunan daya lekat karena kayu tidak memiliki kekuatan untuk mengunci secara mekanis dengan cat. Kayu pinus scots termodifikasi gliserol dan asam sitrat dapat dipertimbangkan untuk aplikasi eksterior.

Downloads

Download data is not yet available.

References

[ASTM] American Standard Testing and Material. 2017. ASTM D3359-17. Standard Test Methods for Rating Adhesion by Tape Test. Annual Book of ASTM Standards. West Conshohocken: American Standard Institution. Reapproved.
[ISO] International Organization for Standardization. 1997. Geomterical Product Specifications (GPS) Surface texture: Profile method. Terms, definitions and surface texture parameters. ISO 4287-1977. Geneva: International Organization for Standardization.
Astuti W. 2019. Adsorpsi Menggunakan Material Berbasis Lignoselulosa. Semarang: Unnes Press.
Baldan A. 2012. Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives. 38: 95-116. doi: 10.1016/j.ijadhadh.2012.04.007.
Basri E, Hanifah N, Martha R, Rahayu IS, Mubarok M, Darmawan W, Gérardin P. 2022. Effect of citric acid and benzophenone tetracarboxyclic acidtreatments on stability, durability, and surface characteristicof short rotation teak. Forests. 13(11): 1-15. doi: 10.3390/f13111938.
Beck G, Hegnar OA, Fossdal CG, Alfredsen G. 2018. Acetylation of Pinus radiata delays hydrolytic depolymerisation by the brown-rot fungus Rhondonia placenta. Int. Biodeterior. Biodegrad. 135: 39–52. doi: 10.1016/j.ibiod.2018.09.003.
Buyuksari U, Avci E, Ayrilmis N, Akkilic H. 2010. Effect of pine cone ratio on the wettability and surface roughness of particleboard. BioResources. 5(3):1824–1833. doi: 10.15376/biores.5.3.1824-1833.
Candan Z, Gorgun HV, Korkut S, Unsal O. 2021a. Surface roughness and wettability performance of thermally modified rowan wood as a fast-growing species. Drewno. 64(8): 1-10. Doi: 10.12841/wood.1644-3985.364.03.
Candan Z, Gonultas O, Gorgun HV, Unsal O. 2021b. Examining parameters of surface quality performance of paulownia wood materials modified by thermal compression technique. Drvna Industrija. 72 (3): 231-236. doi: 10.5552/drvind.2021.1973.
Carnejo A, Barrio I, Compoy M, Lazaro J, Navarrete B. 2017. Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: a critical review. Renewable and Sustainable Energy Reviews. 79: 1400–1413. doi: 10.1016/j.rser.p2017.04.005.
Che W, Xiao Z, Xie Y. 2019. Modification of radiata pine wood with low molecular weight modifying agents and large molecular weight styrene/acrylic acid copolymer dispersion. Wood Research. 64 (5): 777-788. http://www.woodresearch.sk/cms/modification-of-radiata-pine-wood-with-low-molecular-weight-modifying-agents-and-large-molecular-weight-styrene-acrylic-acid-copolymer-dispersion/.
Choowang R, Hiziroglu S. 2015. Properties of thermally-compressed oil palm trunks (Elaeis chineensis). Journal of Tropical Forest Science. 27(1): 39-46. https://www.jstor.org/stable/43150973.
Darmawan W, Ginting M, Gayatri A, Putri RL, Lumongga D, Hasanusi A. 2020. Influence of surface roughness of ten tropical woods species on their surface free energy,varnishes wettability, and bonding quality. Pigment & Resin Technology. 49(6): 441-447. doi: 10.1108/PRT-01-2020-0005.
Darmawan W, Nandika D, Noviyanti E, Alipraja I, Gardner D, Geraldin P. 2018. Wettability and bonding quality of exterior coating on jabon and sengon wood surfaces. J Coat Technol Research. 15(1): 95-104. doi: 10.1007/s11998-017-9954-1.
Demir A, Aydin I. 2019. Investigation of some surface properties and thermogravimetric analysis of veneer sheets treated with fire retardants. Maderas. Ciencia y Tecnología. 21(1): 25-34. doi: 10.4067/S0718-221X2019005000103.
Dundar T, Ayrilmis N, Candan Z. 2014. Evaluation of surface roughness of laminated veneer lumber (LVL) made from beech veneers treated with various fire retardants and dried at different temperatures. Forest Products Journal. Vol. 58(1-2): 71-76. https://go.gale.com/ps/i.do?id=GALE%7CA176049423&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00157473&p=AONE&sw=w&userGroupName=anon%7E9323d06a&aty=open-web-entry.
Evans PD, Vollmer S, Kim JDW, Chan G, Gibson SK. 2016. Improving the performance of clear coatings on wood through the aggregation of marginal gains. Coatings. 6(4): 1-16. doi: 10.3390/coatings6040066.
Febri. 2018. Gliserol Sampah Biodesel Bernilai Emas. Yogyakarta: CV Budi utama.
Geraud EG, Blanchet P, Landry V, Beauregard R. 2016. Pine wood treated with a citric acid and glycerol mixture: Biomaterial performance improved by a bio-byproduct. Bioresources 11(2): 3049-3072. doi: 10.15376/biores.11.2.3049-3072.
Halpern JM, Urbanski R, Weinstock AK, Iwig DF, Mathers RT, Von Recum HA. 2013. A biodegradable thermoset polymer made by esterification of citric acid and glycerol. Journal of Biomedical Materials Research Part A. 102(5): 467-77. doi: 10.1002/jbm.a.34821.
Hill CAS. 2011. Wood modification: An update. Bioresources, 6(2): 918–919. doi: 10.15376/biores.6.2.918-919.
Hill CAS. 2006. Wood Modification – Chemical, Thermal and Other Processes. West Sussex: John Wiley & Sons Ltd.
Himmel S, Mai C. 2015. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung. 69(5): 633-643. doi: 10.1515/hf-2014-0161.
Himmel S, Mai C. 2016. Water vapour sorption of wood modified by acetylation and formalisation-analysed by a sorption kinetics model and thermodynamic considerations. Holzforschung. 70(3): 203-213. doi: 10.1515/hf-2015-0015.
Mantanis GI, Lykidis C and Papadopoulos AN. 2020. Durability of accoya wood in ground stake testing after 10 years of exposure in Greece. Polymers. 12: 1638. doi:10.3390/polym12081638.
Marra AA. 1992. Technology of Wood Bonding : Principles in Practise. New York: Van Nostrand Reinhold.
Martha R, Basri E, Setiono L, Batubara I, Rahayu IS, Gérardin P, Darmawan WD. 2021. The effect of heat treatment on the characteristics of the short rotation teak. International Wood Products Journal. 12(3): 218-227. doi: 10.1080/204264451953723.
Martha R, Dirna FC, Hasanusi A, Rahayu IS, Darmawan W. 2020. Surface free energy of 10 tropical woods species and their acrylic paint wettability. J Adhes Sci Technol. 34(2): 167-177. doi: 10.1080/01694243.2019.1663009.
Papadopoulos AN, Bikiaris DN, Mitropoulos AC, Kyzas GZ. 2019. Nanomaterials and chemical modification technologies for enhanced wood properties: A review. Nanomaterials. 9: 607. doi: 10.3390/nano9040607.
Qin Z, Chen H, Gao Q, Zhang S, Li J. 2015. Wettability of sanded and aged fastgrowing poplar wood surfaces: I. Surface free energy. BioResources. 10(1):1008–1023. doi:10.15376/biores.10.1.1008-1023.
Qin Z, Zhang Q, Gao Q, Zhang S, Li J. 2014. Wettability of sanded and aged fastgrowing poplar wood surface: II. Dynamic wetting models. Beijing: Beijing Forestry University.
Richter HG, Leithoff H, Sonntag U. 2003. Characterisation and extension of juvenile wood in plantation- grown teak (Tectona grandis L.f.) from Ghana. Proceedings of the International Conference on Quality Timber Products of Teak from Sustainable Forest Management; 2003 December 2-5; Peechi, India. KFRI and ITTO. pp 266-272.
Ringman R, Pilgård A, Brischke C, Windeisen E, Richter K. 2017. Incipient brown rot decay in modified wood: Patterns of mass loss, structural integrity, moisture and acetyl content in high resolution. Int. Wood Prod. J. 8(3): 172–182. doi: 10.1080/20426445.2017.1344382.
Ross R. 2021. Wood handbook: Wood as an engineering material. Madison: Department of Agriculture, Forest Service, Forest Products Laboratory.
Rowell RM. 2012. Handbook of Wood Chemistry and Wood Composites: 2nd Edition. Taylor and Francis Group: CRC Press.
Rusli A, Metusalach, Salengke, Tahir MM. 2017. Karakterisasi edible film karagenan dengan pemlastis gliserol. JPHPI. 20(2): 219-229. doi: 10.17844/jphpi.v20i2.17499.
Sandberg D, Kutnar A, Mantanis G. 2017. Wood modification technologies - A review. iForest - Biogeosciences and Forestry. 10(6): 895-908. doi: https://doi.org/10.3832/ifor2380-010.
SAS. 2004. SAS/ IML 9.1 User’s Guide. USA: SAS Institute Inc.
Shi SQ, Gardener DJ. 2001. Dynamic adhesive wettability of wood. Wood and Fiber Science 33(1): 58-68. https://wfs.swst.org/index.php/wfs/article/view/538.
Wålinder M. 2002. Study of lewis acid-base properties of wood by contact angle analysis. Holzforschung. 56(4): 363-371. doi: 10.1515/HF.2002.058.
Yuningsih I, Rahayu IS, Dumasari L, Darmawan W. 2019. Wettability and adherence of acrylic paints on long and short rotation teaks. J Wood Mat Sci and Engss. doi: 10.180/17480272.2019.1575903.
Yuningsih I. 2018. Keterbasahan dan daya lekat lapisan cat akrilik pada kayu jati rotasi panjang dan pendek [Tesis]. Bogor: Institut Pertanian Bogor.
Zelinka SL, Altgen M, Emmerich L, Guigo N, Keplinger T, Kymäläinen M, Thybring EE, Thygesen LG. 2022. Review of wood modification and wood functionalization technologies. Forests. 13(7): 1-46. doi: 10.3390/f13071004.
Published
2024-07-02
How to Cite
DarmawanW., TobingG., BasriE., MarthaR., RahayuI., & GérardinP. (2024). Mikrostruktur dan Karakteristik Permukaan Kayu Pinus Scots (Pinus sylvestris L.) Termodifikasi Gliserol dan Asam Sitrat . Jurnal Ilmu Pertanian Indonesia, (00). Retrieved from https://jurnalpenyuluhan.ipb.ac.id/index.php/JIPI/article/view/51123
Section
Articles