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A B S T R A C T 
 

Nowadays, spectral index has become popular as a tool to identify fire-

burned areas. However, the use of a single index may not be universally 

applicable to region with diverse landscape and vegetation as peatlands. 

Here, we propose to develop a procedure that integrates multiple spectral 

indices with an adaptive thresholding method to enhance the performance 

of burned area detection. We combined the Normalized Difference 

Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) using MODIS 

imagery from 2002 to 2022 to calculate dNBRCBP (Confirmed Burned Pixel) by 

filtering dNDVI and dNBR. The mean and standard deviation of dNBRCBP 

serve as inputs for image thresholding. We tested our approach in Sebangau 

peatland, Central Kalimantan, where fires occur annually. The results showed 

that the model performed well with overall accuracy > of 91%, indicating that 

the model is effective and reliable for identifying burned areas. The findings 

also revealed that the frequency of fire is below 2 times/year, with the 

southeastern is the most fire prone regions. Further, our findings provide an 

alternative approach for identifying burned areas in locations with diverse 

vegetation cover and different geographical regions.    
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1. INTRODUCTION 

Peat fires in Indonesia have increased since 1960 

(Field et al., 2009) and become more frequent since 

1997 (Hoscilo et al., 2011). A study reported that at least 

10–15% of Indonesia’s peatlands experience fires 

annually (Page and Hooijer, 2016), especially for Central 

Kalimantan, one of the largest peatland areas in 

Indonesia, where the ex-mega rice project exists. 

Frequent peat fires have caused detrimental impacts on 

biodiversity (Agus et al., 2019), hydrology (Taufik et al., 

2017), and the environment (Kettridge et al., 2019). Also, 

fires have transformed pristine peat swamp forests into 

fire-prone shrubs (Miettinen et al., 2012). During strong 

El Niño, such as in 2015, mega-fires cost USD 19.1 

billion, worsened air quality, and increased adverse 

health effects (World Bank, 2016). 

Identifying burned areas will benefit from 

assessing the extent of fire damage (Hoscilo et al., 

2011), which is mainly evaluated at field level or using 

satellite data (Alcaras et al., 2022). There are typically 

two approaches for satellite data evaluation: 

classification methods and spectral indices (Woźniak 

and Aleksandrowicz, 2019). There are numerous 

classifications of burned area, including supervised 

classification (Sirin and Medvedeva, 2022), image 

thresholding, object-based approaches (Milczarek et al., 

2023),  and  fuzzy  set  theory (Nebot and Mugica, 2021).  

https://doi.org/10.29244/j.agromet.38.2.68-77
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On the other hand, spectral indices (SIs) combine 

various spectral bands, which are used to distinguish 

between pre-fire and post-fire images and effectively 

identify burned and unburned areas (Woźniak and 

Aleksandrowicz, 2019). 

Despite their widespread use in burned area 

mapping, identifying the most suitable SIs remains 

challenging due to the variability in their performance 

across different conditions. Some studies evaluate 

burned areas using a single spectral index for the 

summer season without assessing the effectiveness 

under diverse environmental conditions (Bastarrika et 

al., 2011; Smiraglia et al., 2020; Stroppiana et al., 2012). 

Since the spectral response is influenced by atmo-

spheric conditions, satellite characteristics, and local 

site conditions, a single SI may not be universally 

applicable (Fornacca et al., 2018; Stroppiana et al., 

2012). Therefore, integrating multiple SIs can leverage 

the strengths of different spectral band combinations, 

enhancing the accuracy and reliability of burned area 

detection across varied conditions. This research 

combines multiple spectral indices to improve burned 

area detection methods, such as the Normalized 

Difference Vegetation Index (NDVI) and the 

Normalized Burn Ratio (NBR). 

NDVI is a vegetation index that is particularly 

effective in differentiating between burned and 

unburned areas due to its intense sensitivity to 

vegetation changes (Chen et al., 2011; Pang et al., 

2017).  Fire alters the surface reflectance by reducing 

near-infrared reflectance and increasing red reflectance 

due to vegetation loss, leading to notable changes in 

NDVI value (Tiwari et al., 2024). NDVI is highly sensitive 

to vegetation greenness, giving an effective index for 

distinguishing the potential photosynthetic capacity of 

trees affected by fires (Pompa-García et al., 2022). On 

the other hand, NBR is a widely recognized index for 

detecting burned areas (Spracklen and Spracklen, 2023; 

Vetrita et al., 2021) as it best separates burned areas 

from shadows and water bodies (Stroppiana et al., 

2012). Combining NDVI and NBR will improve the 

detection of burned areas and distinguish more 

accurately between burned vegetation and other land 

cover types. 

Studies on burned areas have combined SIs and 

adaptive thresholding (Smiraglia et al., 2020; Woźniak 

and Aleksandrowicz, 2019) with some adjustments to 

adapt to landscape conditions. Adaptive thresholding 

addresses the variability in spectral responses to 

burning across different biomes (Boschetti et al., 2015). 

This threshold improved the fixed threshold method 

that often fails to account for the diverse ecological 

parameters and spectral sensitivity associated with 

various regions, leading to inconsistent results (Kolden 

et al., 2015).  Smiraglia et al., (2020) expanded on using 

adaptive thresholding by integrating the agreement 

index and spectral indices for burned area classification 

in temperate regions. 

Here, we test the adaptive image thresholding for 

humid tropical peatland area in Indonesia. The area is 

characterized by highly variable moisture content 

(Taufik et al., 2022) and a mix of dense and sparse 

vegetation (Miettinen et al., 2012), which significantly 

affect the spectral responses used in burned area 

detection. Here, we aim to combine spectral indices 

that consider vegetation changes, such as NDVI and 

NBR, with adaptive thresholding techniques to better 

capture the diverse characteristics of peatland fires 

without using regression-based thresholds. The specific 

objectives are: (i) to propose an integration of multiple 

spectral indices and adaptive images thresholding to 

detect burned areas, (ii) to evaluate the classification 

accuracy of adaptive image thresholding, and (iii) to 

calculate the annual fire frequency in the study site. Our 

methodology will provide an alternative method for 

identifying burned areas in locations with diverse 

vegetation cover and different geographical regions in 

Indonesian peatland. 

2. RESEARCH METHODS 

2.1 Study Site and Data Source 

The research site is on the Kahayan – Sebangau 

Peatland Hydrological Unit (PHU) in Pulang Pisau 

Regency, Central Kalimantan, Indonesia. The PHU 

covers approximately 0.45 Mha of peatland (Cahyono 

et al., 2022). The climate is characterized by strong 

monsoons (Aldrian and Susanto, 2003), with a peak dry 

season in July-September (Usup and Hayasaka, 2023). 

The annual rainfall is above 2000 mm (Hirano et al., 

2015), slightly lower than other tropical peatlands in 

Indonesia (Taufik et al., 2023). Climate-induced drought 

is associated with the El Niño events and contributes to 

frequent fires.  

We used Modis-Terra data (MOD09A1), provided 

by Land Processes Distributed Active Archive Center, 

from 2002-2022 with a spatial resolution of 500 m 

(https://lpdaac.usgs.gov/products/mod09a1v061/), to 

calculate burn area and fire occurrence. Modis 

MOD09A1 was derived from the best observations of 

Terra over 8-day periods, as assessed by observational 

coverage and overall pixel quality. The surface spectral 

reflectance for each band has been measured at 

ground level and has atmospheric corrections for gases, 

aerosols, and Rayleigh scattering (Vermote, 2021). 

MOD09A1 provided 13 bands, but we only selected 

Bands 1 - 7 for this study to separate burned and 

unburned areas. Specifically, Bands 6 (1628–1652 nm) 

and 7 (2105–2155 nm) are the Shortwave Infrared 

https://lpdaac.usgs.gov/products/mod09a1v061/
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(SWIR) bands, which are sensitive to variations in 

moisture content and are instrumental in identifying 

post-fire changes. Bands 2 (841–876 nm) and 3 (459–

479 nm) correspond to the Near Infrared (NIR), and Red 

bands are essential for evaluating vegetation health 

and detecting fire impact. These bands will be used to 

calculate vegetation indices such as the NBR and the 

NDVI. We also used reference data from the Indonesian 

Ministry of Environment and Forestry to validate the 

predicted burn area (https://sipongi.menlhk.go.id/). 

2.2 Normalized Burn Ratio (NBR) 

NBR index uses NIR and SWIR wavelengths, where 

high NBR values generally indicate healthy vegetation, 

while low values indicate bare land and burned areas 

(Alcaras et al., 2022). In healthy vegetation, NIR 

reflectance is typically high due to the internal structure 

of plant cells, which strongly reflect NIR light. Burned 

areas show relatively low reflectivity in the NIR band 

and a high reflectance in the SWIR band. Due to their 

inherent physical properties, water bodies and shadows 

have low reflectance in both the NIR and SWIR bands. 

However, unlike burned areas, they do not show a 

characteristic increase in SWIR reflectance (Duan et al., 

2024). The NBR is formulated in Equation 1. 

NBR =
RNIR−RSWIR

RNIR+RSWIR
      (1) 

where RNIR  is a NIR reflectance (Modis band 2) and 

RSWIR  is a Short Wave Infrared (SWIR) reflectance 

(Modis band 6). 

NBR value was calculated from pre-fire and post-

fire occurrence to determine the extent and severity of 

vegetation change caused by fire (Key and Benson, 

2006). Pre-fire and post-fire NBR values were taken 

from satellite imagery for each month, assuming that 

the duration of the fires was one month. The fire 

duration varies depending on weather conditions and 

fire management practices (Konecny et al., 2016). We 

selected a one-month interval to consistently monitor 

vegetation changes affected by fire, which is suitable 

for monthly temporal analysis. This approach ensures a 

clear distinction between fire events and minimizes the 

risk of duplication when calculating fire occurrences at 

the exact location or pixel. The one-month interval also 

helps to reduce the impact of cloud cover by allowing 

for the selection of clearer satellite imagery. 

Pre-fire images were selected from MODIS 

satellite images at the end of the previous month, while 

post-fire images were obtained from composite 

satellite images in the current month. High NBR values 

indicate healthy vegetation, while low NBR values 

indicate bare soil and burned areas. When a fire occurs, 

vegetation is damaged, and the NBR value decreases 

from the original value. The size of the burned area was 

assessed as the difference between the pre-fire and 

post-fire NBR, which is called dNBR (Equation 2).  

NBR = NBRprefire − NBRpostfire      (2) 

2.3 Normalized Difference Vegetation Index 

(NDVI) 

NDVI is generally used to assess the greenness of 

vegetation. NDVI measures the ratio value between the 

NIR bands reflected by vegetation and the RED bands 

absorbed by vegetation. Healthy vegetation reflects 

more NIR waves and absorbs RED waves. NDVI values 

range from −1 to +1, where positive values indicate a 

higher vegetation index and negative values indicate a 

lower one (Equation 3). 

NDVI =
RNIR−RRed

RNIR+RRed
       (3) 

where RRed is the Red reflectance (Modis Band 1). 

When a fire occurs, NDVI value decreases due to a 

loss of greenness as a decrease in NIR reflectance 

(Tiwari et al., 2024). NDVI value after fire was lower than 

the previous NDVI value. The difference in NDVI values 

before and after a fire can be determined using dNDVI, 

as shown in Equation 4.  

dNDVI = NDVIpostfire − NDVIprefire   (4) 

NDVIpostfire represences NDVI value after the fire, 

and NDVIprefire is NDVI value before the fire. A positive 

dNDVI indicates vegetation growth or a process of 

ecological recovery within the region, especially after 

fire incidents or land degradation. A negative dNDVI 

reflects decreased vegetation cover, likely from 

wildfires or other ecological disturbances. 

2.4 Burn Area Detection 

Burned areas and non-burned areas in this study 

were identified by changes in vegetation reflectance 

values using NBR, NDVI, and adaptive thresholding 

(Fraser et al., 2000). Using Equation 5, we combined the 

dNBR and dNDVI values to form the Confirmed Burned 

Pixel (CPB).   

dNBRCBP = dNBR, if {
 dNBR >  0  
dNDVI <  0 

     (5) 

where dNBRCBP is the dNBR Confirmed Burned Pixel 

(CBP) value, filtered according to equation 5, while 

values other than that are considered null. The dNBRCBP 

value would determine the separated Burn Area (BA) 

threshold. 

The thresholds were determined by analyzing each 

pixel group’s index values yearly based on their mean 

and standard  deviation  (stdev)  of   CPB (Equation 6). 

For each month, we selected pixels with a dNBR 

increase greater than +1 stdev from the mean dNBRCBP. 

We choose the +1 standard deviation (stdev) threshold 

for dNBR calculation because it provides more reliable  

https://sipongi.menlhk.go.id/
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and adaptive threshold for identifying burned areas 

across a wide range of landscapes. A study revealed 

that the +1 stdev threshold effectively captured most 

of the burned pixels (Fraser et al., 2000), ensuring that 

almost all fire-affected areas were detected. Using only 

the mean would be too conservative, potentially 

missing subtle burn signals, especially in regions with 

diverse vegetation responses to fire. 

Standard deviation incorporates the natural 

variation in vegetation response, allowing for a more 

regionally adaptive threshold to account for different 

levels of fire impact across various vegetation types. 

This made +1 stdev for dNBR have a balanced 

approach compared to the extremes of other 

thresholds (i.e. +2, -2, -1), which either include too few 

or too many false positives. Additionally, the post-fire 

NBR values need to be lower than -1 stdev to ensure 

that significant changes in vegetation after the fire are 

accurately detected. This approach discerns the 

variability among the groups, facilitating the 

application of these findings to other fire events.  

BA = dNBR > (µ + σ)dNBRCPB
    

and NBRpostfire < (µ − σ)dNBRCPB
  (6)  

where BA is the burned area, µ is the average value of 

dNBRCBP  while σ is the standard deviation. 

2.5 Accuracy Assessment 

Accuracy assessment is an essential step in 

evaluating the model's performance in fire detection. 

We applied a confusion matrix by comparing each pixel  

of the unburned and burned pixel model with ground-

based fire data from the Indonesian Ministry of 

Environment   and   Forestry.   We   limited   our   ground  

based fire data selection to 2013 to 2022 due to the 

only availability of comprehensive fire detection 

records within this timeframe. The confusion matrix is a 

multidimensional table with cells representing 

variations in one class over, which included Ommision 

Error (OE), Commision Error (CE), the accuracies of the 

Producer (PA), User (UA), and Overall (OA). 

In addition to overall accuracy, we evaluated 

omission errors (producer accuracy) and commission 

errors (user accuracy) to address the imbalanced class 

distribution. We assessed the model performance by 

calculating the proportion of user and producer 

accuracies exceeding thresholds of 70%. We 

categorized classification performance as follows: ‘very 

good’ for accuracies >90%, ‘good’ for accuracies 

between 80% and 90%, ‘acceptable’ for accuracies 

between 70% and 80%, and ‘unacceptable’ for 

accuracies <70% (Woźniak and Aleksandrowicz, 2019). 

The model was classified as effective and reliable if the 

overall accuracy exceeded 90%. We processed the data 

and statistical analysis using R language (R Core Team, 

2021). 

3. RESULTS  

3.1 Burn Area Threshold 

Figure 1 presents the boxplot of burned area 

thresholds (mean +1 stdev) from 2002 to 2022, 

highlighting the variability of the monthly thresholds 

over the years. Adaptive thresholding adjusts the 

threshold values based on monthly data, ensuring that 

the detection of burned areas is responsive to changes 

in environmental conditions and fire characteristics 

over  time. Each  burned  area  is  indicated  by dNBRCBP 

(delta Normalised Burn Ratio Confirmed Burned Pixels)

 

Figure 1. Delta Normalized Burn Ratio (dNBR) threshold value (mean +1 stdev) from 2002-2022. The boxes point out 

the median, and the 25% and 75% quantiles for each year data. The whiskers represent 10 and 90% of 

quantiles. The dots indicate outliers. The red line is the median value of yearly thresholds.
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threshold value. 

Figure 1 provides a threshold value used to detect 

burned areas over two decades (2002-2022), revealing 

significant fluctuations. Each box represents the 

interquartile range of the monthly thresholds for a 

given year, with the line extending to the minimum and 

maximum values, excluding outliers. The presence of 

outliers, particularly in years like 2015, indicates 

extreme fire activities that corresponds with higher 

threshold values, where increases in dNBR thresholds 

reflect the intensity of these fire events. 

The line splitting the box in two represents the 

median value of the monthly threshold in that year. The 

median threshold value typically ranges from 0.1 to 0.3, 

with an average all threshold of approximately 0.21. 

Notably, the highest thresholds were observed in 2015 

around 0.24. The thresholds from 2011 to 2022 showed 

a more stable trend with fewer extreme outliers, 

indicating a relatively consistent approach in detecting 

burned areas during this period. 

3.2 Burn Area Accuracy Assessment 

Table 1 presents the accuracy assessment of 

burned area detection in Kahayan Sebangau peatland 

from 2013 to 2022. The evaluation metrics include 

overall accuracy (OA), producer's accuracy (PA), user's 

accuracy (UA), omission error (OE), and commission 

error (CE). The analysis reveals a generally high overall 

accuracy of burned area detection, with an average of 

90%. However, there are notable variations across the 

years. The highest OA was achieved in 2022 at 98%, 

while the lowest occurred in 2015 at 78%.  The model 

can be classified as effective and reliable, with an overall 

accuracy exceeding 90%. 

The model exhibits a consistent performance 

across years, with both producer and user accuracies 

exceeding the 70% threshold. Both omission and 

commission errors were relatively low. Omission errors, 

which indicate the model's failure to detect actual 

burned areas, have averaged 10%. The highest 

omission error of 20% occurred in 2015, coinciding with 

the year with the lowest overall accuracy. Commission 

errors, representing the model's incorrect identification 

of unburned areas as burned, were consistently low at 

an average of 2%. This indicates the model's 

effectiveness in correctly identifying burned areas while 

reducing false positives (classifying unburned areas as 

burned) and false negatives (missing actual burned 

areas). 

Commission and omission errors were also 

evaluated to understand the model’s reliability better. 

We showed the spatial distribution of commission and 

omission errors for two significant fire years, 2015 and 

2019, which were strongly influenced by El Niño events. 

Figure 2 illustrates the spatial distribution of burned 

and unburned areas and omission and commission 

errors for 2015 and 2019. The omission error for 2015 

was 20%, indicating that the model missed a significant 

portion of burned areas, particularly in the central and 

southern portions. Commission errors (green), 

representing unburned areas mistakenly classified as 

burned, occurred at a rate of 6%, suggesting some 

overestimation in certain areas. 

Table 1. The Model accuracy of burned area detection in Kahayan Sebangau peatland from 2013 - 2022. The overall 

accuracy (OA), producer’s accuracy (PA), user accuracy (UA), omission error (OE), and commission error (CE) 

are estimated for all fires that happened in each year. 
 

Year 
Overall 

Accuracy (%) 

Producer’s 

accuracy (%) 

Omission  

Error (%) 

User’s 

Accuracy (%) 

Commission 

Error (%) 

2013 93 93 7 99 1 

2014 83 84 16 99 1 

2015 78 80 20 94 6 

2016 88 88 12 99 1 

2017 93 92 8 99 1 

2018 87 88 12 99 1 

2019 84 85 15 97 3 

2020 94 94 6 99 1 

2021 97 97 3 99 1 

2022 98 98 2 99 1 

Average 90 90 10 98 2 
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Figure 2.  Maps of burned and unburned areas for 2015 and 2019 with (a) ommision errors for 2015, (b) commission 

errors for 2015, (c) ommision errors for 2019, and (d) commission errors for 2019. 

 
The spatial distribution of the burned areas in 2019 

(Figures 2c and 2d) revealed a lower density of burned 

areas and fewer omission and commission errors 

overall. The omission error in 2019 was 15%, reflecting 

improved detection but still missing some burned areas, 

particularly in central regions. Commission errors in 

2019 dropped to 3%, indicating a more accurate 

classification of unburned areas compared to 2015. 

3.3 Fire Frequency based on Spectral Indices and 

Adaptive Thresholding 

The presented model demonstrates a robust 

method for calculating fire frequency in the Kahayan 

Sebangau PHU. By analyzing burn areas annually from 

2002 to 2022, we can observe the spatial and temporal 

patterns of fires in this region. Figure 3 presents the 

spatial distribution of annual fire frequency in the 

Kahayan Sebangau PHU. The range of fire occurrence 

is from 1 to 8 events per year, with most regions 

experiencing no fire to two fire events each year. 

The annual burn area maps provide a detailed 

visual representation of how fire activity fluctuates over 

time within the region. Figure 3 shows the fluctuating 

fire frequencies between 2002 and 2015, followed by a 

decreasing fire frequency and burn area trend from 

2016 to 2022. From 2003 to 2005, there was a 

noticeable increase in fire occurrences, particularly in 

the northern part, as indicated by the transition from 

green to yellow areas. In 2009, fire activity was more 

dispersed, with a notable cluster in the north of the 

region, while 2011 and 2012 show a marked decrease 

in fire frequency across most areas. The period from 

2013 to 2014 reflects a moderate level of fire activity 

with scattered distributions. However, 2015 stands out 

with a significant surge in fire frequency, again 

concentrated in the central and northern parts. 

The 2016 and 2020 fire activity levels displayed 

relatively low compared to previous years. However, 

2019 shows a noticeable increase in burn areas, 

indicating a resurgence of fire activity. Years of 2021 

and 2022 again show lower burn areas, suggesting a 

return to less frequent fires. For 2002, 2006, and 2015, 

fire frequency was greater than once per year, with 

significant concentration around the central and 

northern parts of the region. This data reveals 

fluctuations in fire occurrences over the years, 

emphasizing the need for continuous monitoring to 

understand and manage fire risks in the Kahayan 

Sebangau. 

4. DISCUSSION 

The fire frequency in the Kahayan Sebangau 

region has varied throughout the years. The annual 

burn area maps reveal that specific years exhibit higher 

fire activities than others. The area and fire frequency 

have increased significantly in 2002, 2006, 2015, and 

2019. The increase can be linked to the El Niño events, 

which cause extreme dry conditions, exacerbating fire 

occurrences in Kalimantan, Indonesia. El Niño is 

characterized by reduced rainfall and lower soil 

moisture levels, rendering the soil and vegetation more 

susceptible to fires (Taufik et al., 2022).  

Fire frequency in the Kahayan Sebangau peatland 

typically ranges from 0 to 2 events per year, but some 

pixels show more frequent fires, up to 8 times per 

year(Figure 3). This high occurrence in specific pixels 

may result from the NBR monthly pre-fire and post-fire 
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Figure 3.  Spatial distribution of annual fire frequency in the Kahayan Sebangau PHU from 2002-2022.

date calculations. Since the model uses monthly data, 

fires that start in one month and continue into the next 

month are counted as separate events. Fire significantly 

increases in dry vegetation, particularly in degraded 

shrublands (Taufik et al., 2024), especially in non-

managed regions (lowered part of Figure 3) like the 

drained peatlands of the former Mega Rice Project 

(Vetrita and Cochrane, 2019). These environments, with 

their low moisture content and flammable plant 

material, are particularly susceptible to ignition and 

rapid fire spread. 

The proposed procedure first integrated two SIs to 

be used as a reference, then calculates thresholds from 

those SIs, and computes a single burned area mask. A 

single spectral index is usually used to assess burned 

areas in specific conditions (Bastarrika et al., 2011; 

Smiraglia et al., 2020; Stroppiana et al., 2012), which 

may not applicable for diverse landscape such as PHU 

Sebangau. Our study demonstrated the advantages of 

integrating multiple spectral indices, such as NBR and 

NDVI, along with adaptive thresholding to enhance 

burned area detection (Figure 1). Further, we confirmed 

the similar findings that visible and near-infrared 

domains are more suitable for immediate post-fire 

assessment (Chen et al., 2011; Fornacca et al., 2018). 

In addition, previous studies applied a single 

threshold approach when analyzing burn severity for 

specific times. For example, a dNBR threshold below 

0.053 was used to classify unburned areas in 

Kalimantan peatland (Hoscilo et al., 2011; Schmidt et al., 

2024). In Boreal Forest Alaska, a threshold of 0.085 was 

applied to differentiate burned-unburned classification 

(Epting and Verbyla, 2005). Our threshold value is 

closed to the threshold low severity class for tropical 

forests in Kalimantan (Hoscilo et al., 2011). However, 

the threshold, which is based on a single image or time, 

often fall within a narrow range, making them 

unsuitable for capturing the ecological and vegetation 

changes observed over time. The adaptive thresholding 

approach presented in this study offers dynamic and 

adaptable detection thresholds for burned areas with a 

good performance (Table 1), particularly in 

Kalimantan’s diverse and ecologically variable regions. 

Future research should prioritize the development 

of more detailed methods for identifying pre- and 

post-fire dates to enhance the accuracy of fire 

frequency estimates. The current assumption of a one-

month fire duration may need to be revised to capture  

the complex dynamics of peatland fires. Accurate pre-

fire and post-fire date estimations are crucial for 
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understanding the temporal patterns of fire activity and 

evaluating the effectiveness of restoration efforts.  

In Indonesia, the Peatland Restoration Agency 

(Badan Restorasi Gambut, BRG) has implemented 

rewetting programs to restore the natural hydrology of 

degraded peatlands, including the Kahayan Sebangau 

region. These efforts have focused on minimizing 

drainage and maintaining appropriate water table 

levels to preserve hydrological and ecological functions 

(Yuwati et al., 2021). The implementation of rewetting 

has significantly reduced fire areas and the number of 

fire events (Taufik et al., 2023). Identifying precise fire 

and post-fire dates is particularly important in 

rewetting activities. By accurately determining the 

timing of fires, researchers can better assess the 

effectiveness of rewetting in preventing recurring fires 

and evaluating the long-term impacts of restoration 

efforts on peatland ecosystems. 

The combination of NBR and NDVI to observe 

vegetation changes before and after a fire is quite 

effective in detecting fire occurrences, consistent with 

other research to use NBR (Sirin and Medvedeva, 2022) 

and NDVI (Rendana et al., 2023) for peat fire detection.  

However, futher study is needed to identify the most 

suitable spectral indices in peatland ecosystems before 

considering the combination of multiple spectral. A 

comprehensive evaluation of various indices will 

enhance the accuracy and reliability of burn area 

detection in these unique environments. It is crucial to 

select the highest-performing spectral indices (SIs), 

which may depend on vegetative status, and to 

integrate them to achieve the most precise mapping, 

balancing omission and commission errors and 

optimizing overall accuracy (Smiraglia et al., 2020). 

Our research used adaptive thresholding, which 

dynamically adjusts based on varying ecological 

conditions and temporal factors. Unlike single 

threshold methods, which may have limitations in 

diverse or changing environments, adaptive 

thresholding can better accommodate environmental 

conditions and seasonal changes, potentially reducing 

omission and commission errors (Smiraglia et al., 2020). 

This adaptability is particularly advantageous in 

peatland ecosystems, characterized by their dynamic 

nature and susceptibility to disturbances. However, it is 

important to note that adaptive thresholding may have 

limitations. For example, the effectiveness of adaptive 

thresholding depends on the quality, quantity, and 

variability of the data used to calculate the model. 

Additionally, this method may struggle with extreme 

values, as it relies on statistical estimates of the mean 

and standard deviation to determine the threshold for 

burned areas, which can be skewed by outliers or 

extreme fire activity. 

5. CONCLUSIONS 

This paper proposes a method for detecting 

burned areas in diverse peatland ecosystems by 

combining multiple spectral indices with adaptive 

image thresholding. Spectral Indices like The 

Normalized Difference Vegetation Index (NDVI) and 

the Normalized Burn Ratio (NBR) are utilized to 

calculate adaptive thresholds annually. The models 

demonstrate the mean of overall accuracies over 90% 

and perform robust classifications to detect burned and 

unburned pixels effectively. Furthermore, it is shown 

that multiple spectral indices and the adaptive 

thresholding technique give more flexible classification 

in the areas with different conditions like peatland. The 

models calculate the frequency of fires in the area, 

showing that most fire occurrences range from 0 to 2 

times/year, and some pixels exhibit more than two fires 

annually. This adaptable methodology enhances the 

precision and applicability of burn area detection in 

various land cover types and region characteristics, 

providing a valuable tool for environmental monitoring 

and fire impact assessment. 
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