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1. Introduction
  

 Thermostability is defined as a substance's 
resistance to irreversible chemical or physical 
changes caused by temperature rise (Zhou et al. 
2008). Protein thermostability is thus the ability to 
maintain of polypeptide chains' unique structure and 
chemical characteristics under extreme temperatures. 
Thermostability is a significant feature of enzymes 
because it increases productivity in the industry. When 
enzymes can operate at higher temperatures, more 
reagents and compounds become more soluble (Lasa 
and Berenguer 1993; Leuschner  and Antranikian 1995).
 Vieille and Zeikus (2001) published a comprehensive 
review of the determinant factors of an enzyme's 
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thermostability. Several parameters, for instance, 
amino acid composition, disulfide bridges, hydrophobic 
interactions, aromatic amino acid interactions, 
hydrogen bonds, ion pairs, oligomerization, and 
metal binding were considered to play the role on 
thermostability. Thermostable enzymes, on the 
other hand, are the result of a synergistic interaction 
of several variables rather than a single main factor, 
particular for enzymes that are expressed naturally by 
thermophilic organisms. In thermophilic organisms, 
several variables are involved in supporting the thermal 
stability of enzymes. Amino acid preference, the 
ratio of charged versus uncharged amino acids, ionic 
interactions, codon use, hydrophobicity, and protein 
surface area are examples of these (Zhou et al. 2008). 
Even though the enzymes used as examples originate 
from hyperthermophilic sources (Vieille and Zeikus 



2001), to date, the publication written two decades ago 
has become guidance for scientists conducting protein 
engineering (Li et al. 2022; Van Wyk et al. 2022; Liu et 
al. 2022; Srivastava et al. 2023). Since there, numerous 
engineering methods to obtain thermostable enzymes 
or other purposes have been documented (Wang et 
al. 2006; Shirke et al. 2018; Khersonsky et al. 2018; 
Noda-Garcia et al. 2018; Deng et al. 2023).
 The application of thermostable enzymes is expected 
in the plastics disposal problem solution. Plastics are 
polymers composed of monomers linked together by 
particular and powerful chemical bonds. Poly(ethylene) 
terephthalate (PET) is a thermoplastic polymer widely 
utilized in various applications, including packaging, 
textiles, and consumer goods. PET is a strong, 
lightweight, adaptable polymer that resists moisture, 
chemicals, and heat. PET is also a low-cost material 
to manufacture, making it a popular choice among 
producers. While PET has many beneficial properties, 
it is not biodegradable and can last for hundreds of 
years in the environment. This condition results in 
a substantial build-up of plastic debris in landfills, 
oceans, and other natural environments, endangering 
species and ecosystems. So far, mechanical and 
chemical recycling are common methods for dealing 
with PET waste. Overall, PET is a valuable material 
with many favorable features, yet, its environmental 
effect and the possibility for long-term accumulation 
of plastic trash are significant challenges that must 
be addressed. Biodegradable and compostable PET 
alternatives  are also being developed, which might 
potentially lessen the environmental impact of plastic 
trash. These materials, however, are not yet widely 
available or cost-effective (Bornscheuer 2016; Yoshida 
et al. 2016; Papadopoulou et al. 2019; Tournier et al. 
2020).
 PETase or polyethylene terephthalate hydrolase 
catalyzes the breakdown of PET. Due to its capability to 
degrade PET, PETase is an attractive enzyme for plastic 
waste management and processing applications. PETase 
expression has been reported from various sources 
of bacterial species that feed on PET, with Ideonella 
sakaiensis and leaf branch compost (LCC) being the 
most fascinating PET hydrolase (Bornscheuer 2016; 
Yoshida et al. 2016; Son et al. 2019; Deng et al. 2023). 
 I. sakaiensis PETase (IsPETase) and Leaf Compost 
Cutinase (LCC) can decompose PET polymer into 
monohydroxyethyl terephthalate (MHET) monomer. 
Although the two possess a relatively extensive sequence 
homology and structure folding, interestingly, both 
enzymes significantly differ in thermostability (Yoshida 

et al. 2016; Shirke et al. 2018; Tournier et al. 2020). More 
specifically, the IsPETase has been deeply explored 
for its potential application in PET depolymerization; 
nevertheless, its evolution from cutinases is not entirely 
known, and attempts undertaken to improve IsPETase's 
thermostability and catalytic efficiency have resisted 
the majority of the accessible sequence space distant 
from the active site (Son et al. 2019; Lu et al. 2022; 
Deng et al. 2023). LCC PET hydrolase is, in fact, a 
cutinase type-enzyme capable of degrading PET that 
has higher activity and thermostability than IsPETase, 
the naturally occurring form of the enzyme. LCC PET 
hydrolase might be a viable candidate for application 
in industrial operations for the degradation of PET 
polymers due to its thermostability. The employment of 
LCC PET hydrolase in these processes has the potential 
to minimize the amount of energy required and the 
expenses associated with plastic degradation (Sulaiman 
et al. 2012; Bornscheuer 2016; Yoshida et al. 2016).
 The fundamental question concerning how LCC PET 
hydrolase has higher thermostability characteristics 
compared to IsPETase and which intrinsic parameters 
become crucial to LCC PET hydrolase thermostability. 
In the present study, IsPETase, LCC sequence, and 
structural information were used to identify the detail 
and main factors governing LCC thermostability. We 
employ bioinformatic tools, online web servers, and 
structural modeling to reveal the impact of each 
parameter. The findings of this study could provide 
guidance in tailoring thermostable IsPETase.
 
2. Materials and Methods

2.1. Sequence and Structure Database
 Sequence of IsPETase (accession: A0A0K8P6T7) 
(Yoshida et al. 2016) and LCC (accession: G9BY57) 
(Sulaiman et al. 2012) were extracted from NCBI. 
Structures of IsPETase (PDB: 6ANE) (Fecker et al. 2018) 
and LCC (PDB: 6THT) (Sulaiman et al. 2014;l Tournier 
et al. 2020) were derived from Protein Data Bank and 
visualized by PyMOL (Schrödinger and DeLano 2020).

2.2. Sequence Intrinsic Parameter
 Sequence intrinsic parameters (bulkiness, secondary 
structure, hydrophobicity, polarity, average of buried 
area and homology/identity) of both PETases were 
analyzed by EMBOSS Pepstats (Madeira et al. 2022) and 
Web Server EXPASY (https://web.expasy.org/protscale/) 
(Gasteiger et al. 2005). Subsequently, all parameters 
were compared. 
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3. Results

3.1. Sequence and Structural Comparison
 The thermostability and sequence comparison 
between IsPETase and LCC are summarized in Table 
1. Melting temperature of LCC PETase is two-fold higher 
than IsPETase, indicating thermostability of LCC is 
higher than IsPETase. Both enzymes possess similar 
molecular weights.

 The IsPETase and LCC comprise 290 and 293 
amino acids, respectively. Both sequences have 44.7% 
of identity and 59.5% of similarity with equivalent 
isoelectric points, which demonstrates that the two PET 
hydrolases possess a relatively high degree of sequence 
homology (Figure 1). Two disulfide bridges and similar 
salt bridge characteristics reflected by comparable FCR 
and k values are established by IsPETase and LCC (Table 
1). Interestingly, the LCC's aromatic, non-polar and 

Table 1. Biochemical and structural features comparisons of PETases (Son et al. 2019; Tournier et al. 2020).
Sequence intrinsic parameters
Melting temperature (°C) 
Molecular weight (g.mol-1)
Amino acid
Isoelectric point
Aromatic residues
Non polar residues
Charged residues
Polar residues
Hydrophobic cluster area (Å)
Hydrogen bonds network
Salt bridges
-Fraction of charge residue (FCR)
-Kappa value (k)
Disulphide bridge

LCC IsPETase
84.7
30179.21
282
9.5
30
164
118
43
4662
24

0.13
0.17
2

45
30246.87
290
9.9
25
162
128
37
2924.5
19

0.13
0.17
2

IsPETase           1 MNFPRAS------RLMQAAVLGGLMAVSA--------AATAQTNPYARGP     36 
                                  |:..||::..|:|::|        :..||:|||.||| 
LCC                1 -------MDGVLWRVRTAALMAALLALAAWALVWASPSVEAQSNPYQRGP     43 
 
IsPETase          37 NPTAASLEASAGPFTVRSFTVSR--PSGYGAGTVYYPTNAGGTVGAIAIV     84 
                     |||.::|.|. |||:|.::||||  .||:|.|.:||||....|.|.||:. 
LCC               44 NPTRSALTAD-GPFSVATYTVSRLSVSGFGGGVIYYPTGTSLTFGGIAMS     92 
 
IsPETase          85 PGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQV    134 
                     |||||..||:.|.|.|||||||||:.|:|||..|.|.||:||..|||..  
LCC               93 PGYTADASSLAWLGRRLASHGFVVLVINTNSRFDYPDSRASQLSAALNY-    141 
 
IsPETase         135 ASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAP    184 
                       |..:|.|.:..::|..|:.|.|.||||||:|..|..|||||||.|..| 
LCC              142 --LRTSSPSAVRARLDANRLAVAGHSMGGGGTLRIAEQNPSLKAAVPLTP    189 
 
IsPETase         185 WDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSM-SRNAKQFLEIN    233 
                     |.:...|:: :||.||...|.|::|||:..|:|.|.:: |...|.::|:: 
LCC              190 WHTDKTFNT-SVPVLIVGAEADTVAPVSQHAIPFYQNLPSTTPKVYVELD    238 
 
IsPETase         234 GGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSD    283 
                     ..||.   :.|||.|.|....::|||.::||||||..|.| |.|...:|| 
LCC              239 NASHF---APNSNNAAISVYTISWMKLWVDNDTRYRQFLC-NVNDPALSD    284 
 
IsPETase         284 FRTAN--CS    290 
                     |||.|  |. 
LCC              285 FRTNNRHCQ    293 
Figure 1. Sequence comparison between IsPETase and LCC. The sequences are aligned by EBLOSUM62 matrix  with gap 

and extend penalties are 10 and 0.5, respectively
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polar residues are higher than the IsPETase. In contrast, 
charged residues of IsPETase are higher than LCC. 
 The three-dimensional structure alignment of 
IsPETase and LCC is presented in Figure 2A. Both 
enzymes share a similar fold and active site. The 
catalytic triad (Ser-Asp-His) and oxyanion hole (Tyr-
Met) are well conserved in terms of position in the 
protein structure (Figure 2B). Detailed assessment of 
secondary structure indicated that some additional 
helix-secondary structures were observed in LCC. The 
additional helices are located in S63-V68, A244-S247 
and N289-Q293. These additional helices may 
contribute to the thermostability features of LCC.
 Furthermore, we compared the hydrophobic 
clusters area (HCA) to understand better how HCA 
affects the thermostability of PETases. As displayed 
in Figure 3, the HCA demonstrated that IsPETase 
(Figure 3A) has less hydrophobic cluster area than LCC 
(Figure 3B). The HCA of LCC shows almost two-fold 
wider than IsPETase which undoubtedly supports its 
higher thermostability. This is also reflected by higher 
aromatic and non-polar residues of LCC PETase (Table 
1).
 Hydrogen bond network between of both PETases 
are visualized ini Figure 4. The LCC is supported by 24 
hydrogen bonds, while only 19 hydrogen bonds are 

formed at IsPETase (Table 1). Moreover, single amino 
acids form some hydrogen bonds from both enzymes. 
In IsPETase, Q99, R126, R240, and R258 form more than 
two hydrogen bonds and R108, Q134, R158, R173, R269, 
and R286 in LCC form with similar characteristics.

4. Discussion

 Further, IsPETase and LCC are representatives of two 
PET hydrolases whose different thermostability and 
probably different root of enzyme origin. However, 
for our knowledge, there is no report that summarize 
explicitly the comparison and analyses between 
these two enzymes. Therefore, this report has useful 
information from the mentioned aspect.
 Utilizing the distinct feature that determines a 
certain protein's activity and thermostability offers 
a possible path toward creating and modifying a 
highly active thermostable protein. Protein structural 
similarity is commonly considered to share functional 
similarity. Moreover, using thermostable enzymes as 
a comparator also helps us to investigate potential 
mutation locations in less stable enzymes. An extensive 
study of amino acid sequences and their interactions 
within the structure has also demonstrated results 
in enhancing protein thermostability (Finch and Kim 

Figure 2. (A) Structure alignment of IsPETase (blue) and LCC (red), (B) the position of active site (Ser-Asp-His) and oxyanion 
hole (Met-Tyr) of two PET hydrolase

A B
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Figure 3. Hydrophobic cluster area (HCA) visualization in hydrophobicity-surface model and analysis of (A) IsPETase and 
(B) LCC

A B
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2018; Sternke et al. 2019). The structure-sequence 
relationship has been assessed on several enzymes 
using bioinformatic tools to identify the important 
features in the enzyme that play a pivotal role in 
activity or thermostability (Swillens et al. 1986; Gan 
et al. 2002; Mazumder and Vasudevan 2008; He et 
al. 2017; Guzzi et al. 2023). Because each enzyme is 
unique, there is no precise consensus that a particular 
interaction within the enzyme is the primary key to 
enzyme thermostability (Suplatov et al. 2015).
 This study compares sequence-structure-based 
thermostability of two fascinating structurally 
homologous PET hydrolases with different thermal 
stability. The IsPETase belongs to thermolabile 
enzymes, while LCC is a thermostable one. Because 
of the substantial level of sequence homology, this 
protein folding similarity is achievable. 
 However, a closer look at the structures reveals 
attractive differences in structural features that 
LCC have evolved to function at high temperatures. 
The interactions of amino acid residues along the 
polypeptide chain and the surrounding media 
determine PET hydrolase's unique three-dimensional 
and stable secondary structures. In fact, the total 
number and strength of covalent and noncovalent 
connections vary amongst IsPETase and LCC, and 
all of these interactions are critical in achieving the 
observable properties, especially the stability and 
function of these proteins. 

 Thermostable LCC has more unique amino acid 
features, particularly aromaticity, hydrophobic 
interaction, polarity, HCA, hydrogen bond networks, 
and tight structural packing. Even though the IsPETase 
has significantly higher charged residues than LCC, 
they do not support the protein stability of the protein 
structure.
 The presence and distribution of aromatic amino 
acids in a protein, for instance, phenylalanine, 
tyrosine, and tryptophan, is referred to as protein 
aromaticity. Because these amino acids have an 
aromatic ring structure, they have distinct chemical 
and physical properties when compared to other 
amino acids. Aromatic amino acids are essential for 
protein structure and function. They can participate in 
hydrophobic interactions, which are critical for protein 
structural stabilization, as well as ligand binding and 
catalytic activity in enzymes. The aromaticity of 
a protein varies based on its amino acid sequence 
and structure. Proteins with a high aromaticity may 
have more stable structures due to an increase in the 
number of hydrophobic contacts, whereas proteins 
with a low aromaticity may be more unstable (Baker 
and Grant 2007; Martin and Holehouse 2020; Dudek 
et al. 2022).
 In line with aromaticity, the hydrophobic cluster 
area (HCA) of a protein is a measure of the amount 
of clustering of hydrophobic residues in the protein 
structure. Hydrophobic residues, such as alanine, 

Figure 4. Hydrogen bond network of (A) IsPETase and (B) LCC PETase
A B
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nonpolar ligands (Gromiha et al. 1999; Kumar et al. 
2000).
 The intricate network of hydrogen bonds that can 
form between the backbone and side chain atoms of 
amino acid residues in a protein is referred to as the 
protein hydrogen bond network. Hydrogen bonds are 
electrostatic interactions between electronegative 
atoms like oxygen or nitrogen and a hydrogen atom 
that is covalently bound to another electronegative 
atom. In a protein, hydrogen bonds can occur between 
neighbouring amino acid backbone amide and carbonyl 
groups, as well as between side chain groups and the 
backbone or other side chains. Hydrogen bonding 
can lead to the creation of secondary structures such 
as alpha helices and beta sheets, which can help to 
stabilize the protein structure. A protein's hydrogen 
bond network can also influence protein activity. 
Hydrogen bonding, for example, can be involved in 
ligand binding or recognising other proteins or nucleic 
acids. Protein conformational changes and protein-
protein interactions can benefit from changes in 
the hydrogen bond network (Vogt and Argos 1997; 
Khechinashvili et al. 2006; Vieira and Degreve 2009).
 Together, thermostability characteristics revealed 
that structure packing plays a pivotal role in the 
thermostable PET hydrolase. This pivotal role is backed 
up by aromaticity, hydrophobic cluster area and 
hydrogen bond network of the amino acid within the 
protein structure. As a result, these features contribute 
to the maintenance of strong connections with other 
residues and the stability of the native state. It could 
be due to the substantial packing impact, as packing 
is considered to be one of the essential features for 
thermophilic protein stability. It is worth to note that, 
of course, to validate these findings, the next in vitro 
experiments is necessary, such as optimizing IsPETase 
to enhance its thermostability based on the data in 
this report.
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