Viskositas dan aktivitas antibakteri kitin berpartikel nano yang dihidrolisis dengan volume HCl berbeda Viscosity and antibacterial activity of nano-particle chitin hydrolyzed with different volumes of HCl

Asri Silvana Naiu, Nikmawatisusanti Yusuf

Abstract

Chitin and its derivative chitosan possess antibacterial properties. To facilitate their application, chitin, which is highly insoluble, must be converted into soluble particles. This can be achieved by reducing the particle size using acidic compounds and a high-speed destruction process. It is believed that particle reduction affects the antibacterial activity and viscosity of chitin. The objective of this study was to determine the optimal ratio of chitin and HCl for producing nano-chitin based on the maximum zone of bacterial inhibition and the viscosity of the resulting solution. The bacteria tested were Staphylococcus aureus, Escherichia coli, and Salmonella sp. The treatments were administered at three different ratios of chitin to HCl: 1:8, 1:10, and 1:12 (w/v). The parameters analyzed included the yield of nanochitin particles, zone of bacterial inhibition, and viscosity of the nanochitin solution. A chitin: HCl ratio of 1:8 yielded the best result, producing 70.44% of nanochitin. Differences in the amount of HCl used to hydrolyze chitin affected the bacterial inhibition zone. The inhibition zones of Salmonella sp. (7.4 mm), and S. aureus (8.10 mm). The only observed zone of inhibition for E. coli was treatment with 1:10. Viscosity was not affected by the different chitin-to-HCl ratios. Nanochitin from the ratio of 1:8 has the potential as an active ingredient in the manufacture of edible film.

References

Agustina, S., Swantara, I. M. D., & Suartha, I. N. (2018). Isolasi kitin, karakterisasi, dan sintesis kitosan dari kulit udang. Jurnal Kimia, 9(2), 271–278. https://doi.org/10.24843/JCHEM.2015.v09.i02.p19
Alias, S., Ismail, A., & Muhammad, A. (2010). Effect of pH on ZnO nanoparticle properties synthesized by sol-gel centrifugation. Journal of Alloys and Compound, 499(2), 231-237. https://doi.org/10.1016/j.jallcom.2010.03.174
Amalia, K. P., Ekayani, M., & Nurjanah. (2021). Pemetaan dan alternatif pemanfaatan limbah cangkang rajungan di Indonesia. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 310-318. https://doi.org/10.17844/jphpi.v24i3.37436
Bai, L., Liu, L., Esquivel, M., Tardy, B. L., Huan, S., Niu, X., Liu, S., Yang, G., Fan, Y., & Rojas, O. J. (2022). Nanochitin: chemistry, structure, assembly, and applications. Chemical Reviews, 122(13), 11604–11674. https://doi.org/10.1021/acs.chemrev.2c00125
Baizuroh, N., Yahdi, Y., & Dewi, Y. K. (2020). Uji kualitas hand sanitizer ekstrak daun kunyit (Curcuma longa Linn). Al-Kimiya, 7(2), 88–94. https://doi.org/10.15575/ak.v7i2.8744
Bajaj, M., Winter, J., & Gallert, C. (2011). Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochemical Engineering Journal, 56(1–2), 51–62. https://doi.org/10.1016/j.bej.2011.05.006
Chatelet, C., Damour, O., & Domard, A. (2001). Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 22(3), 261–268. https://doi.org /10.1016/S0142-9612(00)00183-6
Chen, J. K., Shen, C. R., & Liu, C. L. (2010). N-Acetylglucosamine: production and aplication. Marine Drugs, 8(9), 2493–2516. https://doi.org/10.3390/md8092493
Cooper, G., & Hausman R. E. (2007). The Cell: A molecular approach (4 th edition). Sinauer Associates, Inc.
El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules, 120 (Part A), 1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139
Endriani, R., Andrini, F., & Alfina, D. (2012). Pola resistensi bakteri penyebab infeksi saluran kemih (ISK) terhadap antibakteri di Pekanbaru. Jurnal Natur Indonesia, 12(2), 130-135. https://doi.org/10.31258/jnat.12.2.130-135
Herdyastuti, N., & Cahyaningrum, S. E. (2016). Mempelajari karakteristik senyawa n-asetil pada proses hidrolisis kitin menggunakan enzim kitinase dari Pseudomonas sp TNH 54. [Laporan Penelitian Fundamental]. Universitas Negeri Surabaya.
Hidayat, T., Suptijah, P., & Nurjanah. (2013). Karakterisasi tepung buah lindur (Brugeira gymnorrhiza) sebagai beras analog dengan penambahan sagu dan kitosan. Jurnal Pengolahan Hasil Perikanan Indonesia, 16(3), 268-277. https://doi.org/10.17844/jphpi.v16i3.8065
Hogg, S. (2005). Essential microbiology. John Wiley & Sons Ltd.
Huang, Y., Liu, H., Liu, S., & Li, S. (2020). Cinnamon cassia oil emulsions stabilized by chitin nanofibrils: physicochemical properties and antibacterial activities. Journal of Agricultural and Food Chemistry, 68(49), 14620–14631. https://doi.org/10.1021/acs.jafc.0c03971
Hudzicki, J. (2009). Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. American Society for Microbiology.
Ibrahim, B., Uju., & Soleh, A. M. (2020). Kinerja membran komposit kitosan-karagenan pada system microbial fuel cell dalam menghasilkan biolistrik dari limbah pemindangan ikan. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(1), 137-146. https://doi.org/10.17844/jphpi.v23i1.31056
Jakhar, J. K., Reddy, A. D., & Maharia, S. (2012). Characterization of fish gelatin from blackspotted croaker (Protonibea diacanthus). Archives of Applied Science Research, 4(3), 1353–1358.
Jawetz, E., Melnick, J., & Adelberg, E. (1995). Medical microbiology (20 th). Appleton & Lange.
Jeon, Y., Park, P., & Kim, S. (2001). Antimicrobial effect of chi_tooligosaccharides produced by bioreactor. Carbohydrate Polymers, 44(1), 71–76.
Kaya, M., Tozak, K., Baran, T., Sezen, G., & Sargin, I. (2013). Natural porous and nano fiber chitin structure from Gammarus argaeus. EXCLI Journal, 2013(12), 503–510.
Kumar, G. N. P., & Bhat, S. K. (2018). Preparation of chitin nano whiskers from mushrooms. International Journal of Scientific and Research Publications (IJSRP), 8(8), 130–137. https://doi.org/10.29322/ijsrp.8.8.2018.p8017
Li, M. C., Wu, Q., Song, K., Cheng, H. N., Suzuki, S., & Lei, T. (2016). Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustainable Chemistry and Engineering, 4(8), 4385–4395. https://doi.org/10.1021/acssuschemeng.6b00981
Liao, J., & Huang, H. (2022). Preparation, characterization and gelation of a fungal nano chitin derived from Hericium erinaceus residue. Polymers, 14(3), 474-486. https://doi.org/10.3390/polym14030474
Lin, N., Wei, S., Xia, T., Hu, F., Huang, J., & Dufresn, A. (2014). Green bionanocomposites from high-elasticity “soft” polyurethane and high-crystallinity “rigid” chitin nanocrystals with controlled surface acetylation. Royal Society ChemistryAdv, 2014(00), 2–11. https://doi.org/10.1039/C4RA07899C
Magani, A. K., Tallei, T. E., & Kolondam, B. J. (2020). Uji antibakteri nanopartikel kitosan terhadap pertumbuhan bakteri Staphylococcus aureus dan Escherichia coli. Jurnal Bios Logos, 10(1), 7-12. https://doi.org/10.35799/jbl.10.1.2020.27978
Martinez-Martinez, L. (2008). Extended-spectrum beta-lactamases and the permeability barrier. Clinical Microbiology and Infection, 14(Supplement 1), 82–89. https://doi.org/10.1111/j.1469-0691.2007.01860.x
Masykuroh, A., & Puspasari, H. (2022). Aktivitas antibakteri nano partikel perak (npp) biosintesis menggunakan ekstrak keladi serawak Alocasia macrorrhizos terhadap Staphylococcus aureus dan Escherichia coli. Bioma: Jurnal Biologi Makassar, 7(1), 76–85. https://doi.org/10.20956/bioma.v7i1.19350
Mohanraj, U., & Chen, Y. (2006). Nanoparticles- A review. Tropical Journal of Pharmaceutical Research, 5(1), 561–573.
Naiu, A. S. (2020). Edible film berbasis nanokitin dan nanokaragenan serta aplikasinya pada udang rebus tanpa kulit [Disertasi]. Universitas Sam Ratulangi.
Naiu, A. S., Berhimpon, S., Iwan Montolalu, R., Kawung, N. J., & Suptijah, P. (2020). The effect of HCl-thermal pressure hydrolysis and high-speed destruction of chitin on particle size distribution and functional group of nano-chitin compound. Current Research in Nutrition and Food Science, 8(1), 197–205. https://doi.org/10.12944/CRNFSJ.8.1.18
Natalia, D. A., Dharmayanti, N., & Dewi, F. R. (2021). Produksi kitosan dari cangkang rajungan (Portunus sp.) pada suhu ruang. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 301-309. https://doi.org/10.17844/jphpi.v24i3.36635
Nguyen, V. Q., Ishihara, M., Kinoda, J., Hattori, H., Nakamura, S., Ono, T., Miyahira, Y., & Matsui, T. (2014). Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. Journal of Nanobiotechnology, 12(1), 1–9. https://doi.org/10.1186/s12951-014-0049-1
No, H. K., Young Park, N., Ho Lee, S., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74(1–2), 65–72. https://doi.org/10.1016/S0168-1605(01)00717-6
Notriawan, D., Nesbah, N., Ernis, G., Fadhila, M. A., Wibowo, R. H., Pertiwi, R., & Ilfanisari, V. (2021). Aktivitas antibakteri membran nanokomposit kitosan/nanopartikel perak. Alchemy, 9(1), 26–31. https://doi.org/10.18860/al.v9i1.11146
Nurahmanto, D., Tanjaya, E., Arizka, H. E., & Hasanah, S. U. (2016). Perbandingan aktivitas antimikroba ekstrak etanol daun beluntas (Pluchea indica L) sediaan gel dan spray antiseptik. Seminar Nasional Current Challenges in Drug Use and Development. Prosiding Farmasi Universitas Jember, 63–72.
Pillai, C., & Sharma, C. (2009). Electrospinning of chitin and chitosan nanofibres. Trends Biomater Artif. Organs, 22(3), 179–201.
Purwanto, U. M. S., Vachyra, D. A., & Andrianto, D. (2023). Keamanan krim antijerawat dengan penambahan kitosan cangkang kerang bulu. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(2), 241-250. https://doi.org/10.17844/jphpi.v26i2.44125
Ratnawulan, A., Noor, E., & Suptijah, P. (2018). Pemanfaatan kitosan dalam daur ulang air sebagai aplikasi teknik produksi bersih. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2), 276-286. https://doi.org/10.17844/jphpi.v21i2.23044
Rochima, E. (2007). Karakterisasi kitin dan kitosan asal limbah rajungan Cirebon Jawa Barat. Jurnal Pengolahan Hasil Perikanan Indonesia, 10(1), 9–22. https://doi.org/10.17844/jphpi.v10i1.965
Rochima, E., Fiyanih, E., Afrianto, E., Joni, I. M., Subhan, U., & Panatarani, C. (2018). Efek penambahan suspense nanokitosan pada edible coating terhadap aktivitas antibakteri. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 127-136. https://doi.org/10.17844/jphpi.v21i1.21461
Sari, S. R., Baehaki, A., Lestari, S. D., Arafah, E., & Guttifera. (2020). Aktivitas antibakteri kitosan mono-sakarida komplek sebagai penghambat bakteri patogen pada olahan produk perikanan. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 542-547.
Sinala, S. (2016). Farmasi Fisik. Pusdik SDM Kesehatan.
Sjahrurachman, A., Mirawati, T., Ikaningsih, & Warsa, U. (2004). Etiologi dan resistensi bakteri penyebab infeksi saluran kemih di RSCM dan RS MMC Jakarta 2001-2003. PT. Grafiti Medika Pers.
Toy. (2015). Uji daya hambat ekstrak rumput laut Gracilaria sp terhadap pertumbuhan bakteri Staphylococcus aureus. Jurnal E-Gigi, 3(1), 153–159. https://doi.org/10.35790/eg.3.1.2015.6600
Tzoumaki, M. V., Moschakis, T., Scholten, E., & Biliaderis, C. G. (2013). In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food and Function, 4(1), 121–129. https://doi.org/10.1039/c2fo30129f
Wahyuni, S., Khaeruni, A., & Hartini. (2013). Kitosan cangkang udang windu sebagai pengawet fillet ikan gabus (Channa striata). Jurnal Pengolahan Hasil Perikanan Indonesia, 16(3), 233-241. https://doi.org/10.17844/jphpi.v16i3.8061
Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79(4), 687–697. https://doi.org/10.1007/s00253-008-1471-9
Yang, X., Liu, J., Pei, Y., Zheng, X., & Tang, K. (2020). Recent progress in preparation and application of nano-chitin materials. Energy and Environmental Materials, 3(4), 492–515. https://doi.org/10.1002/eem2.12079
Zewude, D. A., Izawa, H., & Ifuku, S. (2021). Optimum preparation conditions for highly individualized chitin nanofibers using ultrasonic generator. Polymers, 13(15), 2501-2510. https://doi.org/10.3390/polym13152501

Authors

Asri Silvana Naiu
asrisilvananaiu@gmail.com (Primary Contact)
Nikmawatisusanti Yusuf
Naiu A. S., & Yusuf N. (2024). Viskositas dan aktivitas antibakteri kitin berpartikel nano yang dihidrolisis dengan volume HCl berbeda: Viscosity and antibacterial activity of nano-particle chitin hydrolyzed with different volumes of HCl . Jurnal Pengolahan Hasil Perikanan Indonesia, 27(7). https://doi.org/10.17844/jphpi.v27i7.50979

Article Details